Binding, Transcytosis and Biodistribution of Anti-PECAM-1 Iron Oxide Nanoparticles for Brain-Targeted Delivery
نویسندگان
چکیده
OBJECTIVE Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo. METHODS Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma. RESULTS Anti-PECAM-1 IONPs were ~130 nm. The extent of nanoparticle antibody surface coverage was 63.6 ± 8.4%. Only 6.39 ± 1.22% of labeled antibody dissociated from IONPs in heparin-treated whole blood over 4 h. The binding affinity of PECAM-1 antibody (KD) was 32 nM with a maximal binding (Bmax) of 17 × 10(5) antibody molecules/cell. Anti-PECAM-1 IONP flux across a hCMEC/D3 monolayer was significantly higher than IgG IONP's with 31% of anti-PECAM-1 IONPs in the receiving chamber after 6 h. Anti-PECAM-1 IONPs showed higher concentrations in lung and brain, but not liver or spleen, than IgG IONPs after infusion. The capillary depletion method showed that 17±12% of the anti-PECAM-1 IONPs crossed the BBB into the brain ten minutes after infusion. CONCLUSIONS PECAM-1 antibody coating significantly increased IONP flux across the hCMEC/D3 monolayer. In vivo results showed that the PECAM-1 antibody enhanced BBB association and brain parenchymal accumulation of IONPs compared to IgG. This research demonstrates the benefit of anti-PECAM-1 IONPs for association and flux across the BBB into the brain in relation to its biodistribution in peripheral organs. The results provide insight into potential application and toxicity concerns of anti-PECAM-1 IONPs in the central nervous system.
منابع مشابه
Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging.
A mouse model of glioblastoma multiforme was used to determine the accumulation of a targeted contrast agent in tumor vessels. The contrast agent, consisting of superparamagnetic iron oxide coated with dextran, was functionalized with an anti-insulin-like-growth-factor binding protein 7 (anti-IGFBP7) single domain antibody. The near infrared marker, Cy5.5, was also attached for an in vivo fluor...
متن کاملTargeting Caspase-3 as Dual Therapeutic Benefits by RNAi Facilitating Brain-Targeted Nanoparticles in a Rat Model of Parkinson’s Disease
The activation of caspase-3 is an important hallmark in Parkinson's disease. It could induce neuron death by apoptosis and microglia activation by inflammation. As a result, inhibition the activation of caspase-3 would exert synergistic dual effect in brain in order to prevent the progress of Parkinson's disease. Silencing caspase-3 genes by RNA interference could inhibit the activation of casp...
متن کاملGreen synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption
Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...
متن کاملGreen synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption
Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...
متن کاملNanoparticles for tumor targeted therapies and their pharmacokinetics.
Various types of nanoparticles, such as liposomes, polymeric micelles, dendrimers, superparamagnetic iron oxide crystals, and colloidal gold, have been employed in targeted therapies for cancer. Both passive and active targeting strategies can be utilized for nano-drug delivery. Passive targeting is based on the enhanced permeability and retention (EPR) effect of the vasculature surrounding tum...
متن کامل